Contact Form

Have queries for this product, fill out this form, and we will get back to you within 24 hours





Get Our Tips Straight To Your Inbox


Biomedical Engineering: Overview, Education, Specializations, Universities, Careers and Jobs

Careers in Biomedical Engineereing

Biomedical Engineering field has been getting a lot of interest in the past decade. However, students and parents are not too sure about the field of study and career prospects. People sometimes also get confused between Biomedical Science and Biomedical Engineering. This article will give you an exhaustive overview of Careers in Biomedical Engineeringsubject areas, specializations, top study abroad destinations & universities, and job prospects after a degree in biomedical engineering.

 

Biomedical Engineering Careers

 

Biomedical Engineering Careers and Jobs

 

What is Biomedical Engineering?

 

Biomedical Engineering, also known as Bioengineering, is an applied field of science and engineering at the intersection of engineering, biology, healthcare, and medicine. The field of biomedical engineering involves the application of principles of engineering (mechanical, electrical, electronics, computer science, and chemical engineering) and basic sciences (physics, mathematics, chemistry, and biology).

 

The objective of Biomedical Engineering

 

The aim of the field is to develop systems, equipment,  and devices in order to solve clinical problems – both diagnostics and therapeutics. Besides, diagnosis and treatment of diseases, biomedical engineering also plays a big role in alleviating, rehabilitation and compensating for disabilities and/or injuries.

 

This is a very hard-core technical field. So, biomedical engineering graduates need to possess an in-depth understanding of human biology (living systems) and engineering, along with strong technical and analytical skills.

 

What does a Biomedical Engineer do?

 

Some of the examples of applications of biomedical engineering are:

 

  • Prosthetics (e.g. Dentures, artificial limb replacements)
  • Surgical devices and systems (e.g. Laser surgery, robotics)
  • Monitoring systems (checking devices for blood glucose, heart rate etc.)
  • Therapeutic devices (insulin pumps, kidney dialysis, electrical nerve stimulation, sophisticated inhalers)
  • Artificial organs – valves, pacemakers
  • Imaging methods – ultrasound, X-ray, particle beams, MRI
  • Diagnostic systems like lab-on-a-chip
  • Physical therapy devices like exercise equipment and wearable tech gears.
  • Healthcare apps (for smartphones) for personalized medicine

 

what can you do with a degree in biomedical engineering

Where kind of Jobs are available for Biomedical Engineers?

 

Biomedical engineers usually get employed in the industry (healthcare, medical instrument, biomedical, pharmaceutical), hospitals, research organizations (including CROs), academia, and the government sector. Biomedical engineers often liaise and/or coordinate with the medical doctors, clinicians, biomedical scientists, and healthcare professionals. Biomedical engineers use their expertise in engineering, life science, and medical fields.

 

Career Options for Biomedical Engineering Graduates

 

Besides technical roles (such as R&D, Process Development, Product development, QC/QA and regulatory affairs), biomedical engineering graduates also work as marketing advisors and management consultants in the industry. It is also common for biomedical engineering graduates having advanced training and qualifications in other fields depending on one’s skill-set and career interests. For instance, if you want to work in the core clinical field (direct patient care or clinical research), you can pursue a Medicine degree at the graduate level, after finishing an undergraduate degree in Biomedical Engineering. Sometimes, undergraduate medical students or MBBS graduates also switch towards biomedical engineering. Many biomedical engineers possess an M.D. Degree, thereby combining their knowledge of medicine and engineering.

 

Difference between Biomedical Engineering & Biomedical Science

 

The biomedical engineering field does overlap with the field of biomedical science(s). But, there is a significant difference. While the biomedical engineers work around instrumentation and engineering; the biomedical scientists put more focus on biological & life sciences, chemistry, and medicine.

 

Biomedical scientists usually work in the laboratory. They handle biological samples (blood, urine, cells, and tissues) and use a wide range of laboratory equipment ranging from test tubes, beakers, and pipettes to computers and hi-tech equipment.

 

Some of the common job roles and responsibilities of a biomedical scientist are:

 

– Testing and screening for lifestyle and infectious diseases
– Investigating and understanding the disease mechanisms, profile, and progression
– Conducting research on finding new, effective and innovative ways to diagnose diseases as early as possible
– Working towards the discovery and development of novel treatments, which could be preventive (vaccines) and/or therapeutic (drugs and medicines)

 

Biomedical Science deals with human biology,  pathology,  biochemistry,  molecular and cell biology, genetics,  pharmacology,  immunology,  applied or clinical chemistry,  microbiology,  epidemiology, and biomedical engineering. Those who are interested in biomedical science, please refer to my post on Biomedical Science Jobs and Careers.

 

Job Prospects for Biomedical Engineering Graduates

 

In 2011,  Biomedical Engineering topped the list of Careers with the fastest-growing jobs. In 2015, biomedical engineering featured among the best 11 college majors for job prospects. The demand is on a rise, as biomedical engineering bagged the No. 2 position in the list of Best College Majors for Lucrative Career 2016-2017. In the US, as a fresh college graduate (or MS degree holder), you can expect to earn around USD $60, 000 per year. With five to ten years of experience, you can expect an annual paycheck of USD $96, 000. The figures can go for PhD degree holders.

Read the story of Niren Murthy, who chose the field of Biomedical Engineering after getting to know the unlimited potential of the biomedical engineering field.

 

Biomedical Engineering Career Path

 

In order to study biomedical engineering at the undergraduate level, you need to have PCM or PCB combination at 10+2 level. It would be advantageous if you have got PCMB combination. If you are not sure if your strengths, skills, and goals align with the biomedical engineering career path or not, try our Free Career Test or sign up for a Personalized Counselling Session.

 

Caution for those who want to pursue Bachelors in Biomedical Engineering in India

 

 

If you are really interested in the field of biomedical engineering and want to have an accomplished career, don’t go for Bachelors in Biomedical Engineering in India straightaway. It’s better you do your Bachelors in Electronics, Mechanical, or Electrical EEngineeringfrom India, and then go for MS in biomedical engineering in abroad. If you are really keen to do a Bachelors in Biomedical Engineering, then abroad will be a better option. The main problem in India is that the infrastructure and labs are still not up to the standards. Getting a job after pursuing Bachelor in Biomedical Engineering in India is quite tough in India (and even many other Asian countries).

 

The USA would be one of the best destinations for undergraduate studies in biomedical engineering. Other top destinations for biomedical engineering would be Germany, Canada, UK, Switzerland, Australia, Singapore, Netherlands, and Sweden.

 

Undergraduate Program in Biomedical Engineering in the US

 

In the US, the first two years you would study basic sciences and principles of engineering. The interdisciplinary nature and flexibility of the US education system will also allow you to switch engineering disciplines. With time familiar with the key concepts and terminology of human anatomy and physiology, as well as cell biology, thermodynamics, fluid mechanics, biomechanics and computing and design for biomedical engineers.

 

Later, you will get to study and undergo training for the advanced level of core biomedical engineering. You study other modules on engineering and biomedical subjects such as engineering mathematics, mechanics, biomaterials, electronic engineering, engineering design, robotics, human anatomy, physiology, cardiovascular system, and neuroscience. Practicals will involve biomedical science, engineering design, product design, programming, computer simulations and hospital (or clinic) visits.

 

Most of the foreign universities (especially US, UK and Canada) will also offer the opportunity of internships and industrial placements at the undergraduate level. Due to the interdisciplinary nature and complexity of the field, you do need to have hands-on and real-world experience for a considerable time period say 3 – 9 months; unlike a day-visit to a company or one month of industrial training.

 

Top 10 US universities for Biomedical Engineering at the Undergraduate Level

 

Johns Hopkins University
Georgia Institute of Technology
University of California – San Diego
Carnegie Mellon University
Columbia University
Duke University
MIT
University of Texas at Austin
University of Virginia
Washington University – St. Louis

 

Top Universities for Biomedical Engineering in the World

Postgraduate Studies in Biomedical Engineering

 

At the postgraduate level (MS or PhD), you can specialize in a further specialized area of biomedical engineering. Let’s have a look at those exciting fields.

 

Top 10 Specializations of Biomedical Engineering

 

Bioinstrumentation involves the application of electronics and instrumentation techniques to develop devices for the diagnosis and treatment of diseases.

 

Biomechanics It includes the study of motion, material deformation, fluid flow within the human body (and in devices), and transport of chemical constituents across biological systems.

 

Biomaterials describe both living tissue and materials used for implantation. Understanding the properties of the living material is vital in the design of implant materials. The biomaterials are designed to integrate with the biological systems (organs, tissues, and blood).

 

Systems Physiology is the field of biomedical engineering in which engineering strategies, techniques, and tools are used to gain a comprehensive and integrated understanding of the function of living organisms ranging from bacteria to humans. Later, the modeling comes into play for the analysis of experimental data and in formulating mathematical descriptions of physiological events.

 

Clinical Engineering is the application of technology for health care in hospitals. The clinical engineer is a member of the health care team along with physicians, nurses and other hospital staff. Clinical engineers are responsible for developing and maintaining the computer database of medical instrumentation and equipment records and for the purchase and use of supplicated medical instruments.

 

Rehabilitation Engineering is a new and growing specialty area of biomedical engineering. Rehabilitation engineers expand capabilities and improve the quality of life for individuals with physical impairments.

 

Medical Imaging basically involves taking pictures inside the human body to diagnose diseases.

 

Tissue Engineering revolves around creating tissues and tissue materials to replace failing and compromised bodily functions.

 

Neural Engineering focuses on the interaction between the nervous system of the body and any artificial medical device. It is one of the coolest and most exciting stuff within the field of biomedical engineering.

 

Computational Modelling deals with simulations and investigating (including visualization) of what’s going on in our cells and organs. This is another rocking field of biomedical engineering.

 

Top Universities for Biomedical Engineering in the World for MS/PhD

 

Georgia Institute of Technology
Stanford University
MIT
Johns Hopkins University
UC Berkeley
Boston University
Northwestern University
UT Austin
Rice University
University of Michigan – Ann Arbor
University of Pennsylvania
Duke University
University of British Columbia
University of New South Wales
ETH Zurich
EPFL
Imperial College London
Harvard University
University of Cambridge
Rochester Institute of Technology
University of Sheffield
University of Twente
TU Munich
Hamburg University of Applied Sciences
University of Freiburg
RWTH Aachen University
Wageningen University
Utrecht University
University of Groningen
TU Delft (aka Delft University of Technology)
KTH Royal Institute of Technology
Chalmers University of Technology
Linkoping University
Karolinska Institute
University College Dublin
Trinity College Dublin
University of Birmingham
Ghent University
Free University of Brussels
Czech Technical University
University of Southampton
Newcastle University
University of Glasgow

 

You might also like to read about Top 10 MS Specializations to Study Abroad

 

CEMACUBE

 

Have you heard about CEMACUBE? CEMACUBE (Common European MAster’s CoUrse in Biomedical Engineering) is an excellent program and is one of the best Master programs in the world for Biomedical Engineering. If you require professional assistance with applications and/or admission, please refer to our services.

 

Future of Biomedical Engineering

 

Healthcare is a necessity. With the increasing complexity of our lifestyle, environmental factors, and the increase of aging population – there is growing need for advanced medical technologies. Besides, the increasing overlap between medicine and technology, the field of biomedical engineering will be getting more popular in the coming future.

 

Last but not the least, we are now getting into the era Digital Health and Personalized Medicine. Have you heard about Elon Musk’s plan about self-driving cars that can take the driver/owner to a nearby hospital in case of a heart attack or stroke? Read about Elon Musk’s Masterplan on Digital Health, and the news on Tesla’s Autopilot Car took the Owner to the Hospital. Thus, Biomedical Engineering is all about the advancement of quality of life and healthcare.

 

If you have got any further queries about higher studies, career roadmap, or jobs & careers in biomedical engineering, please feel free to post your query in the comment box below. Don’t forget to share the article, and let others know about this exciting field of biomedical engineering.

Author: Tanmoy Ray

I am a Career Adviser & MS Admission Consultant. Additionally, I also manage online marketing at Stoodnt. I did my Masters from the UK (Aston University) and have worked at the University of Oxford (UK), Utrecht University (Netherlands), University of New South Wales (Australia) and MeetUniversity (India).

Comments(1)

Muhammad Saleem

Hello, Can I do MSC in Genetics after BSC in bioengineering...? Plz answer me at my email..thank u

Related Posts

FinTech Ecosystem in India
FinTech Ecosystem in India – Trends, Top Startups, Jobs, Challenges and Opportunities Tanmoy Ray

The financial technology (FinTech) ecosystem in India has been arguably the hottest one. An explosion of smartphone users and state-of-the-art digital infrastructure are fueling the rapid…

Read More

Job Hunting in January
Job Hunting in January – The Best Time to Start Looking for Jobs Tanmoy Ray

It’s January 2019, and if you’re a job seeker, you know what that means: Time to kick things into high gear! New year equals new you,…

Read More

Unconventional Courses After Class 12 Science
Uncommon But Rewarding Courses After Class 12 Science Baishali Mukherjee

Engineering & Medical and B.Sc. courses are the most sought after ones for science students after they qualify their plus two board exam. However, there…

Read More

Jobs after Masters for International Students in Netherlands and France
Jobs after Masters for International Students in Netherlands and France Tanmoy Ray

Europe is a great place to study for international students. It is the home to many prestigious universities. The Master’s programs in Europe can be finished…

Read More